
Lecture 22: Basic Applications of Fourier Analysis
(Extractors and Leftover Hash Lemma)

Lecture 22: Basic Applications of Fourier Analysis(Extractors and Leftover Hash Lemma)

Imperfect Randomness Sources

A probability distribution X has min-entropy at least k if
Pr[X = x] 6 2−k , for all x in the sample space

Definition ((n,k)-Source)

A source over sample space {0, 1}n with min-entropy at least k is
known as an (n, k)-source.

There are other specialized imperfect randomness sources like,
bit-fixing sources, Santha-Vazirani sources
Goal: Design an extractor to extract pure randomness from
any min-entropy source from a class of sources
For example, design an extractor that extracts pure
randomness from any (n, k)-source

Lecture 22: Basic Applications of Fourier Analysis(Extractors and Leftover Hash Lemma)

Extractors

Definition ((Cn,m, ε)-Extractor)

Let Cn be a class of imperfect randomness sources over the sample
space {0, 1}n. A (Cn,m, ε)-extractor is a function
Ext : {0, 1}n → {0, 1}m such that, for all X ∈ Cn, we have
SD (Ext(X),Um) 6 ε.

Such a function is also known as a deterministic extractor

Lecture 22: Basic Applications of Fourier Analysis(Extractors and Leftover Hash Lemma)

Impossibility Result

Lemma (Negative Result)

Let Cn be the set of all (n, n − 1)-sources. For any ε < 1/2, there
does not exist a (Cn, 1, ε)-extractor.

This result is extremely strong. Even if the sources have
(n − 1) min-entropy, we cannot extract even one bit that is
close to uniform!
If possible let there exists such an extractor Ext
Let Pb = Ext−1(b), for b ∈ {0, 1}
Note that at least one of P0 or P1 is of size 2n−1. Suppose
|Pb∗ | > 2n−1

Let X be the uniform distribution over the set Pb∗ , represented
by U(Pb∗), and Pr[X = x] 6 2−(n−1), for all x ∈ {0, 1}n

Note that SD (Ext(X),U1) = 1/2

Lecture 22: Basic Applications of Fourier Analysis(Extractors and Leftover Hash Lemma)

Anything to Salvage?

Note that computing the distribution U(Pb∗) might be
computationally inefficient. What if we restrict to distributions
that are easy (or, efficient) to sample?

Lemma (Efficient Negative Result)

Let Cn be the sources that are samplable in time T (given uniform
random bits as input) and have min-entropy at least
k = (n − 1)− lg(3/2). Then, for all ε < 1/4 there does not exist
any (Cn, 1, ε)-extractor that has time complexity T ′, such that
T ′ 6 T − 2n −Θ(1).

Let Pb be the distribution that takes as input two uniform
random strings (r , r ′) ∈ {0, 1}2n. If Ext(r) = b, output r ;
otherwise output r ′.

Lecture 22: Basic Applications of Fourier Analysis(Extractors and Leftover Hash Lemma)

Proof

This technique is known as rejection sampling, i.e. “keep
rejecting the samples till you get something you desire, or
(after a threshold number of sample draws) give up and
output the final sample”
The time complexity T to sample Pb is T ′ + 2n + Θ(1), hence
the bound T > T ′ + 2n + Θ(1) is satisfied
Let pb be the probability of Ext(Un) = b

Then, we have
Pr[Ext(Pb) = b] = pb · 1 + (1− pb) · pb = pb(2− pb) and,
similarly, Pr[Ext(Pb) = b] = pb(2− pb)

Maximum of these two probabilities is at least 3/4
So, the statistical distance from U1 of one of these two
distributions is at least 1/4
That distribution will have maximum probability
2−k 6 2−(n−1) + 2−n, and this satisfies the min-entropy bound

Lecture 22: Basic Applications of Fourier Analysis(Extractors and Leftover Hash Lemma)

Take-away Message

It is still possible to have the complexity of the extractor to be
significantly larger than the sampling complexity of the sources
There are positive results where good deterministic extractors
exist when the class of sources are simple, for example,
bit-fixing sources, affine sources, sources samplable by
small-depth circuits
In the computational setting, if hard to invert functions exist
then we can construct an efficient extractor for sources
samplable in time p(n), where p(·) is a fixed polynomial
A more general version of the above statement is considered
by Nisan-Wigderson

Lecture 22: Basic Applications of Fourier Analysis(Extractors and Leftover Hash Lemma)

Seeded Extractors

These extractors take as inputs a uniform random string
s ∼ Ud known as the seed
Goal: Given this initial investment of pure d bits, we are
interested in obtaining m pure random bits as output from k
imperfect bits. We want m ≈ n + d and d to be as small as
possible.

Definition (Strong Extractor)

A (Cn, d ,m, ε)-strong-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m is
a function such that, for any X ∈ Cn, we have:

SD ((Ud ,Ext(X ,Ud)), (Ud ,Um)) 6 ε

For Cn = (n, k)-sources, our aim is to get m ≈ k and d as
small as possible

Lecture 22: Basic Applications of Fourier Analysis(Extractors and Leftover Hash Lemma)

2-Universal Hash Function Family

Let Fn,m be the set of all function f : {0, 1}n → {0, 1}m

H is a distribution over the sample space Fn,m

Definition (2-Universal Hash Function Family)

For every distinct x1, x2 ∈ {0, 1}n, we have:

Pr
h∼H

[h(x1) = h(x2)] 6
1
2m

We want that the sampling h ∼ H can be efficiently performed
by a randomized algorithm that takes a sample from Ud

Intuitively, two separate inputs collide under h at the same
probability that they collide under a random function from
Fn,m

Lecture 22: Basic Applications of Fourier Analysis(Extractors and Leftover Hash Lemma)

Leftover Hash Lemma

Theorem (LHL)

Let H be a 2-universal Hash Function Family. For any X that is an
(n, k)-source, the following is true:

SD ((H,H(X)), (H,Um)) 6 ε,

where 2ε =
√

2−(k−m) − 2−k

That is, H is a good extractor for (n, k)-sources
So, we need to construct the family H that can be sampled
using only d-bits of randomness, and we want d to be as small
as possible
Note about the proof: We will see a more general
Fourier-based proof, because there is another result, namely
“Lopsided-LHL,” that (as far as I know) cannot be proven
using elementary combinatorial techniques

Lecture 22: Basic Applications of Fourier Analysis(Extractors and Leftover Hash Lemma)

Proof

We will use M = 2m and K = 2k

We bound the SD as follows:

2SD ((H,H(X)), (H,Um))

= E
h∼H

[2SD (h(X),Um)]

= E
h∼H

 ∑
y∈{0,1}m

|h(X)(y)− Um(y)|


6 E

h∼H

M1/2

 ∑
y∈{0,1}m

(h(X)(y)− Um(y))2

1/2
 , Cauchy-Schwartz

=M E
h∼H

[√
‖h(X)− Um‖22

]
6M

√
E

h∼H

[
‖h(X)− Um‖22

]
, Jensen’s

Lecture 22: Basic Applications of Fourier Analysis(Extractors and Leftover Hash Lemma)

Proof

Let us upper bound ‖h(X)− Um‖22

‖h(X)− Um‖22
=
∑

S⊆[m]

(̂h(X)− Um)(S)2, Parseval’s

=
∑

S⊆[m] : S 6=∅

ĥ(X)(S)2

=
∑

S⊆[m]

ĥ(X)(S)2 − ĥ(X)(S = ∅)2

= ‖h(X)‖22 − 1/M2

So, we have the bound:

2SD ((H,H(X)), (H,Um)) 6 M

√
E

h∼H

[
‖h(X)‖22 −M−2

]
Lecture 22: Basic Applications of Fourier Analysis(Extractors and Leftover Hash Lemma)

Proof

So, it suffices to upper bound Eh∼H

[
‖h(X)‖22

]
= E

h∼H

[
‖h(X)‖22

]
= E

h∼H
E

y∼Um

[
h(X)(y)2]

= E
h∼H

E
y∼Um

[
Pr[h(X (1)) = y ∧ h(X (2)) = y]

]
= E

h∼H
E

y∼Um

[
Pr[X (1) = X (2)] Pr[h(X (1)) = h(X (2)) = y |X (1) = X (2)]

]
+ E

h∼H
E

y∼Um

[
Pr[X (1) 6= X (2)] Pr[h(X (1)) = h(X (2)) = y |X (1) 6= X (2)]

]

Lecture 22: Basic Applications of Fourier Analysis(Extractors and Leftover Hash Lemma)

Proof

The first term:

Pr[X (1) = X (2)] E
h∼H

1
M

∑
y∈{0,1}m

Pr[h(X (1)) = h(X (2)) = y |X (1) = X (2)]

= Pr[X (1) = X (2)] E
h∼H

1
M

Pr[h(X (1)) = h(X (2))|X (1) = X (2)]

= Pr[X (1) = X (2)] E
h∼H

1
M
· 1

6
1
M
· Pr[X (1) = X (2)]

Lecture 22: Basic Applications of Fourier Analysis(Extractors and Leftover Hash Lemma)

Proof

Second Term:

1
M
· Pr[X (1) 6= X (2)] E

h∼H
Pr[h(X (1)) = h(X (2))|X (1) 6= X (2)]

6
1
M2 Pr[X (1) 6= X (2)]

=
1
M2 (1− Pr[X (1) = X (2)])

Lecture 22: Basic Applications of Fourier Analysis(Extractors and Leftover Hash Lemma)

Proof

So, we have:

Eh∼H

[
‖h(X)‖22

]
− 1

M2

6 Pr[X (1) = X (2)]

(
1
M
− 1

M2

)
6

1
K

(
1
M
− 1

M2

)
So, overall we have:

2SD ((H,H(X)), (H,Um)) 6

√
M

K
− 1

K

Hence the result

Lecture 22: Basic Applications of Fourier Analysis(Extractors and Leftover Hash Lemma)

